
LBNL-44352

Remote Control for Videoconferencing

Marcia Perry, Deborah Agarwal

Information and Computing Sciences Division
Ernest Orlando Lawrence Berkeley National Laboratory

Berkeley, CA 94720

November 1999

This work was supported by the Director, Office of Science. Office of Advanced Scientific Computing Research.
Mathematical, Information, and Computational Sciences Division under U.S. Department of Energy Contract No. DE-
AC03-76SF00098.

1

Remote Control for Videoconferencing*

Marcia Perry and Deborah Agarwal

Information and Computing Sciences Division
Ernest Orlando Lawrence Berkeley National Laboratory

One Cyclotron Road
Berkeley, California 94720

MPerry@lbl.gov, DAAgarwal@lbl.gov
Telephone: (510) 486-6786 Fax: (510) 486-6363

ABSTRACT

We have designed, implemented, and deployed a camera control system and a conference
controller that provide remote control capabilities for videoconferencing over the Internet. The
camera control system allows users to pan, tilt, and zoom the cameras, switch between cameras,
and get a picture-in-picture view from their desktops. The conference controller allows
conference participants to not only start and stop the media tools on a remote host, but also to
dynamically change settings and turn transmission on and off. It supports the vic (video) and vat
(audio) Internet videoconferencing tools and enhances their usability by providing an integrated
and secure user interface for local and remote control of these applications. This paper describes
the design and implementation of the camera control system (devserv and camclnt) and the
conference controller (confcntlr). The remote control capabilities offered by these tools have
changed the videoconferencing paradigm to one of telepresence. With these tools remote users
can “walk” around the room, focus in on objects, and actively participate rather than just
observe.

1. INTRODUCTION

The implementation of IP multicast over the Internet has inspired videoconferencing tools for
video, audio, session directory, conference management, and shared workspace applications.
These tools are built as standalone applications and integrated videoconferencing systems.
However, they are designed for people sitting directly at the computer terminal participating in a
videoconference and in some conferencing situations there may not be anyone to sit at the
computer at a participating site. In the case of collaboratories, our experience has been that the
researchers present at an experiment site do not want to tend to the videoconferencing tools in
order to select views for the remote collaborators. This is also the case for participants in
conference room meetings. However, if no one is at the sending host to execute a video tool or
does not turn on transmission, remote users have no way of receiving an image. Also, if the
person watching the video wishes to move a remote camera or change the remote settings and is
unable to do so, it is frustrating to that remote participant. Remote control of videoconferencing

*This work was supported by the Director, Office of Science. Office of Advanced Scientific Computing Research. Mathematical,
Information, and Computational Sciences Division under U. S. Department of Energy Contract No. DE-AC03-76SF00098 with
the University of California.

2

devices can provide a non-disruptive means of moving cameras and improving audio quality
locally.

As part of the Distributed Collaboratories project of the Imaging and Distributed Collaborations
Group at Lawrence Berkeley Laboratory, we have designed, implemented, and deployed a
camera control system and a conference controller. These tools give the remote user a sense of
telepresence by providing remote control capabilities for videoconferences over the Internet.
With the remote camera control and conference controller, collaborators can “walk” around a
remote room, focusing in on what is taking place. This capability allows users to feel more like
participants instead of observers. The camera control system consists of a server (devserv) and a
client (camclnt) to drive serial-controllable video devices. Devserv is run on the machine
directly connected via serial ports to the camera system. Camclnt is the user interface that can be
run remotely or locally to control the cameras. Through the camclnt interface the user can
control camera pan, tilt, zoom, and picture-in-picture. The devserv and camclnt programs
communicate via IP multicast and UDP unicast.

The conference control tool, confcntlr, enhances the usability of the media tools vic (video) and
vat (audio) by providing an integrated and significantly enhanced user interface to these tools.
Confcntlr allows conference participants from local and remote sites to change media tool set-
tings. Confcntlr is based on a peer-to-peer architecture and it uses TCP connections to exchange
messages over the Internet and IP multicast for communication with the media tools on the local
host.

The remainder of this paper is organized as follows. Section 2 surveys related work in multicast-
based videoconferencing. Section 3 discusses the remote camera control system. Section 4
discusses the conference control tool. Section 5 summarizes the paper and suggests future work.

2. RELATED WORK

Many of the early public domain, IP multicast-based videoconferencing tools were single media
standalone applications such as the sdr session directory[4], and the mbone tools--vic and vat for
video and audio and wb, a shared whiteboard[5]. Later development involved enhancing
existing tools and building integrated systems. For example, support for new video cards was
added to vic and the Robust Audio Tool (rat), which offers improved audio quality, was
developed[10]. Although vic, vat, wb, and rat are independent applications, they all have the
ability to use a local multicast-based “conference bus” or “message bus” for interprocess
communication.

An early conference management tool, the MultiMedia Conference Control program (MMCC),
provides an integrated user interface to media tools, and offers session creation and invitation
capabilities. Its “autopilot mode” allows users to accept invitations automatically, so the media
tools can be started from a remote host, but settings cannot be changed remotely while the tools
are executing[13]. More recent integrated conference management systems include the
Multimedia Internet Terminal (MINT)[14], mStar[8], the MASH project[7], and the CORE2000
Collaboration Environment[9]. MASH has added to vic and vat the collaborator application,
which provides an integrated user interface to the media tools[12]. MASH has also implemented
a remote-controlled version of vic (rvic) to allow conference participants in one room (without a

3

technician) to manipulate a shared video display. An rvic server displays a set of windows
representing the various video sources and supports different window layouts [6]. In addition to
applications, MASH provides a network and media toolkit from which new applications can be
built, and this toolkit includes agents for driving some serial devices. MASH is a research tool
and so the priority is not on robustness or completeness of the tools.

mStar is a commercial product and includes a controller that drives a Canon VC-C1 camera and
an Extron 100 videoswitcher. Its development framework defines mechanisms for remotely
controlling tools and parameters (e.g., stopping tools or changing bandwidth from a remote host).
This control is intended for administrators rather than for conference participants. CORE2000
provides remote startup and termination of applications and a camera controller for pan, tilt, and
zoom. When a user starts a tool, it is automatically launched on all participants’ hosts and, when
a user terminates a tool, he or she is asked whether to stop the tool for everyone. Once the tool is
executing its settings cannot be changed by a remote host. CORE2000 supports third-party
applications (e.g., CuSeeMe, Televiewer) and provides a framework for porting new tools to its
Java environment.

The above systems provide cross-platform, integrated user interfaces for establishing, joining,
and controlling multimedia conferences from the desktop. Although features vary from system
to system, they support a wide range of collaborative capabilities including invitation, voting,
floor control, chat, media archiving and playback, resource reservation, and conferencing via a
web browser. And while several of the above tools provide some remote control capabilities,
they do not offer all of the features needed by a distributed collaboratory. For example, these
tools lack the abilities to remotely drive a variety of cameras and to change the configuration of
media tools during execution. Since these capabilities are important for telepresence, we
developed the remote camera control system and conference controller to directly address these
needs.

3. REMOTE CAMERA CONTROL SYSTEM

The camera control system consists of a device server (devserv) and a client (camclnt) which
together allow users to control the video devices. Devserv is run on the host connected to the
devices and camclnt is the graphical user interface that can be run anywhere. Participants using
camclnt can select the camera to view and can pan, tilt, or zoom any available camera. They can
also create or move a picture-in-picture view if there is a videoswitcher. In addition to providing
a means of controlling video devices from the desktop, devserv and camclnt are extensible and
cross-platform. Devserv is written in C++ and camclnt is written in Java and both have been
tested on Solaris, FreeBSD, Linux, Irix, and Windows95/98/NT. The server currently supports
the Sony EVI-D30/D31 and Canon VC-C1/VC-C3 cameras and the Panasonic WJ-MX50
videoswitcher.

3.1 System Design

Client requests are transmitted using UDP unicast and IP multicast connections; the server uses
IP multicast to send messages. Servers and clients can execute on the same or different hosts and
any number of hosts can join a multicast group. Our system supports both the socket interface

4

for network communication and the common communication library developed under the
Collaboratory Interoperability Framework (CIF) project[1]. The CIF library provides a simple
uniform interface to low-level network protocols providing reliable and unreliable unicast and
multicast. CIF has implementations available in both C++ and Java and these implementations
interoperate seamlessly.

Requests to move the video devices are sent by the client to a server using UDP unicast. The
server then drives the devices (via RS232 communication) and multicasts the resulting status.
Clients can also send a request to the server to send a description message. Commands and
descriptions are ASCII strings, defined in our Remote Camera Control Language[2]. All
messages contain a header with a timestamp and the server’s name. Descriptions contain status
information such as conference information (address, port, etc.) and the state of the connected
devices (e.g., type, degrees of freedom, current positions). Commands specify the device, degree
of freedom, and the appropriate values and allow absolute, relative, and fractional camera
movements. For example, “cam 3 tilt R -20 1” is a command for camera three to tilt minus
twenty degrees relative to the current position at the maximum speed, and “cam 1 pan F 0.5 1” is
a command to pan camera one by one-half of an image to the right, at maximum speed. Other
clients may be written to work with devserv by implementing the Remote Camera Control
Language.

In order to control access to the devices, we have incorporated the Secure Socket Layer (SSL) to
provide a secure connection between the client and the server, and the Akenti authorization
system to verify client authorization[15]. Servers and clients are identified by X.509 identity
certificates.

3.2 Devserv

Devserv’s class structures for networking and devices are shown in Figure 1. In the network
hierarchy, classes for specific connection types (UDP unicast, IP multicast, and SSL) are derived
from a Network abstract base class that encapsulates common socket properties (e.g., identifier,
open/close, send/receive). For CIF, objects from the CIF library are also used. The hardware
device classes mirror physical objects. A class for each device is derived from the class that
encapsulates the properties of its category (e.g., the Camera or Videoswitcher class). These base
classes are derived from the Device abstract base class which represents attributes that are
common to all programmable devices (e.g., move, transmit, receive). At runtime an object is
instantiated for each device that is connected. Classes for new devices can be easily derived
from the existing classes (e.g., a new videoswitcher could be derived from the Videoswitcher
class). The network class structure can be extended similarly.

5

Upon startup, devserv determines the hardware and network configuration for the host from a
configuration file and then opens the serial port and network connections and initializes the
devices according to the configuration. It then receives and processes requests until program ter-
mination. For security, the Akenti software provides authorization for each identity so that
devserv can make access control decisions. If security is enabled, an SSL connection is
established from camclnt to devserv to exchange and validate identity certificates. The shared
secret that is generated by the SSL handshake (the master-secret) is cached by devserv and used
to make access control decisions when requests arrive. Devserv multicasts descriptions
periodically or after carrying out a request. Requests are sequenced by their timestamps.

The devserv program is threaded: a thread is created for each device and network connection.
The device threads initialize, run, and shut down the devices. The threads for network
connections process incoming requests while the main thread sends descriptions. Thread
synchronization uses “wait-and-signal” mechanisms and synchronize serial ports by locking
objects.

3.3 Camclnt

Camclnt uses the Java I/O and networking packages to implement communication. For CIF,
objects from the CIF Java implementation are used. At startup camclnt opens its network
connections and then multicasts a request for a description message. The descriptions allow
camclnt to discover the addresses of hosts running servers and the devices connected to each
server. This information is cached by camclnt. Camclnt’s graphical user interface displays a list
of the servers discovered. When a server is selected, the window is reconfigured to show the
information for that server.

Camclnt’s graphical user interface is based on Java’s Abstract Window Toolkit (AWT). The Java
Media Framework (JMF) tools are incorporated to display the video. The main window contains
controls for selecting a server, selecting cameras to view and move, and specifying device
commands. Commands are sent to the server when the user selects a device, clicks in the pan-

Figure 1: Devserv’s Major Class Structures

Device

Videoswitcher

Panasonicwjmx50

Camera

Sonyevid30 Canonvcc1 Canonvcc3

 Serialport

Network

IP SSLUDP

and-tilt area, or manipulates a zoom control. For security, each command also includes a signed
hash of the command. Fractional moves and a picture-in-picture view are created by clicking
and dragging in the camera view area or the JMF player window. The pan/tilt area allows the
user access to the entire pan and tilt range of the camera. Figure 2 shows the main window on
the right and the JMF player window on the left.

Because servers can
triggered events and
tion arrives, the rec
reconfigures the inf
Access to shared ob

4. CONFCNTLR

Confcntlr was deve
face[11]. It support

• start one
• stop med
• obtain a
• change s
• turn vide

Based on a peer-to-
videoconference. C
exchanged between
restrict access to the

• encrypt/
• allow re
• allow us

uncondi
• provide
Figure 2: JMF Video Player and Camclnt Main Window
6

 send descriptions at any time, camclnt uses a main thread to respond to user-
 a separate thread for receiving messages from the server. When a descrip-

eiving thread updates the configuration information for the server and
ormation in the main window to reflect the server’s current configuration.
jects is synchronized with Java synchronization mechanisms.

loped to control media tools locally and remotely from a unified inter-
s the following actions:

 or all media tools on a local or remote host with user-selected settings
ia tools running on a local or remote host

 remote host’s settings and current videoconferencing information
ettings for a local or remote media tool that is executing
o transmission on or off at a local or remote site

peer architecture, confcntlr is meant to execute on each host participating in a
onfcntlr supports encryption to preserve confidentiality and integrity of data
 confcntlrs over the public Internet. Security features also allow a user to
 local confcntlr. The security operations are to:

decrypt messages exchanged between conference controllers at remote sites
stricted control to authorized users
ers to grant or deny permission for another host to perform an operation
tionally or on a per-request basis
warnings when changes are made

7

4.1 Design

The conference controller was designed as a desktop application that permits access to the tools
it controls. It is single-threaded, handling all its events within one event loop that utilizes a FIFO
event queue. Communication between confcntlrs running on different hosts is via TCP
connections. Communication between applications running on the same host is via a
“conference bus.” The conference bus is an IP multicast connection with a time-to-live of zero
to restrict messages to the local host. Figure 3 depicts this communication architecture.

In order to allow an arbitrary number of remote controllers, a separate TCP connection is used
for each request; all other connections are opened once and remain open until program
termination. Each conference controller controls one conference session at one site but multiple
confcntlrs can be executed for simultaneous participation in multiple conferences.

4.2 Implementation

The conference controller was written in Tcl/Tk and C and runs under Solaris, freeBSD, Irix, and
Windows. It has been designed as four separate units that work together: a graphical user
interface (GUI), a control unit, a network unit, and an encryption unit. Figure 4 shows the
relationships of these components.

All actions go through the control unit. When a user manipulates a GUI control to invoke a local
or remote operation, the control unit processes the request. To send a message to a remote host
or to a videoconference tool on the same host, the control unit invokes the network component.
The network unit invokes the encryption unit when messages are sent to or received from a
remote host. The encryption unit uses the SSLeay library to encrypt plain text and decrypt
ciphertext with the Data Encryption Standard (DES). When the network unit receives a message,

confcntlrvic vic vat

Figure 3: Communication Channels. A TCP connection is for peer-to-peer communication; the conference
bus is for interprocess communication.

Figure 4: Confcntlr’s Components. The arrows indicate the data flow.

 GUI

 Control Unit

 Network Unit Encryption
 Unit

TCP

Host A

Conference Bus Conference Bus

Host B

confcntlr vat vic vic

8

the control unit processes the message and invokes the GUI to display the output. The control
unit carries out local operations invoked by the GUI or network unit. To start or stop a media
tool on the local host, confcntlr spawns or terminates a process for the tool. To change local
settings for a tool that is executing, the control unit formats a message and the network unit sends
the message to the target tool. When a user invokes a remote operation, the control unit formats
a message and the network unit sends it to the remote confcntlr. The control unit also formats
replies to requests received from other hosts and processes incoming replies.

The network unit is responsible for establishing and closing socket connections and transmitting
and receiving all host-to-host and interprocess communication. Requests and replies are usually
not sequential and replies are not always sent. There are two host-to-host communication
schemes.

1. Host A sends a request to host B. Host A does not wait for a reply unless it is obtaining a
remote host’s settings. Host B receives the request, processes it, and sends a reply.

2. Host A notifies host B that some event took place (e.g., host A terminated a tool). Host B
receives and processes the notification but does not send a reply.

For interprocess communication, each process connected to a multicast channel receives a copy
of all messages sent over the channel. If a process recognizes the message type, it processes the
message locally and may also forward the message to another conference controller at a remote
site. Confcntlr sends messages on the conference bus to dynamically change settings on the
media tools and processes notifications from the tools that a setting was changed or that it is
being terminated.

Confcntlr’s graphical user interface is designed to be unobtrusive so that it can run continuously
on the user’s desktop. It presents a main window with status information and controls for basic
operations. Popup windows can be opened for specific categories of functions (e.g., local or
remote settings, security, and general conference control). The main window is shown in Figure
5. The status buttons indicate what media tools are running locally and remotely. The image in
the lower left displays the remote access level: red, yellow, and green correspond to “allow no
one,” “allow authorized users,” and “allow anyone,” respectively.

The conference window, shown in Figure 6, is used for setting media tool addresses and
launching the media tools. Figure 7 shows the window for changing the settings of remote
media; the “Local Settings” window is similar. Figure 8 shows the security window for access
control, prompts, and warnings options, an access control list, and a “View key” button to invoke
an encryption window.

Figure 5: Confcntlr’s main window

5. SUMMARY AND FUTURE W

This paper describes the design an
controller that together provide rem
conferencing. These applications
in a videoconference from anywhe
watching the transmission and care
This new remote control capability
telepresence in which remote users

The camera control system and co
videoconferencing at Lawrence Be
rooms and by the Spectro-Microsc
remote control tools, participants a
experimentation or attending the m

Figure 7: Remote Settings Windo
Figure 6: Conference Window
9

ORK

d implementation of a camera control system and a conference
ote control capabilities to Internet-based multimedia

allow users to control the video devices and media tools used
re over the Internet. With these tools the person who is
s most about how it is received can control the transmission.
 has changed the videoconferencing paradigm to one of
 become active participants rather than passive observers.

nference controller have served an important role in
rkeley Laboratory and have been used in large conference
opy Collaboratory[3] for videoconferencing. With these
t the local site can spend their time on scientific
eeting rather than ‘babysitting’ the videoconference tools. By

w Figure 8: Security window

10

presenting a unified interface to the media tools, confcntlr has made it easier to manage these
separate tools. Confcntlr has also been used to remotely instruct a user in operating the media
tools. Access control mechanisms allow protection of computer and network resources and have
reduced concerns about being watched or heard without a user’s knowledge and consent.

Our experience has been that the usability of multimedia conferencing tools is enhanced when
there is a unified, intuitive, and configurable interface. Our next goal will be to expand the
integrated interface concept into a wide range of videoconferencing capabilities. We plan to
offer an expanded implementation that works with a wider variety of media tools. In addition to
remote control capabilities, the enhanced system will include mechanisms for floor control,
indicating users’ availability, and meeting with both groups and individuals. The remote camera
control system was demonstrated at the High Performance Distributed Computing Conference
(HPDC’98) in Chicago, Illinois, July 1998 and at the SuperComputing Conference (SC’98) in
Orlando, Florida, November 1998. Confcntlr was demonstrated at the SuperComputing
Conference (SC’97) in San Jose, California, November 1997. More information about the
project is available at http://www-itg.lbl.gov and http://www-itg.lbl.gov/mbone.

REFERENCES

1. Agarwal, D., et al., The Collaboratory Interoperability Framework Common Application
Programming Interface, http://www-itg.lbl.gov/CIF/Reports/GcommonAPI.html, LBNL
Report #44357.

2. Agarwal, D., Perry, M., Camera Remote Control Command Language, http://www-
itg.lbl.gov/devserv/Remcam.txt, LBNL PUB-3149.

3. Agarwal, D., Johnston, W., Perry, M., The Spectro-Microscopy Collaboratory at the ALS,
http://www-itg.lbl.gov/Collaboratories/ALS.html, LBNL Report #37331.

4. Clarke, L., Sasse, A., “Conceptual Design Reconsidered -- The Case of the Internet Session
Directory Tool.” Proceedings of HCI’97, Bristol, UK, August 1997.

5. McCanne, S., Jacobson, V., “vic: A Flexible Framework for Packet Video.” ACM Multi-
media, November 1995, pp 1-19.

6. Hodes, T., et al., “Shared remote control of a video conferencing application: motivation,
design, and implementation.” Proceedings of SPIE Multimedia Computing and Networking,
San Jose, CA, USA, January 1999, pp. 17-28.

7. McCanne, S., et al., “Toward a Common Infrastructure for Multimedia-Networking
Middleware”, Proceedings of the 7th International Workshop on Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV’97), May 1997.

8. Parnes, P., Synnes, K., Schefstrom, D., “A Framework for Management and Control of Dis-
tributed Applications using Agents and IP-multicast.” Proceedings of the 18th IEEE INFO-

11

COM Conference (INFOCOM’99), 1999.

9. Payne, D., Myers, J., “The EMSL Collaborative Research Environment (CORE) -
Collaboration via the World Wide Web.” The IEEE Fifth Workshops on Enabling
Technology: Infrastructure for Collaborative Enterprises (WET ICE ‘96), June 19-21, 1996,
Stanford, California.

10. Perkins, C., et al., “Multicast Audio: The Next Generation.” Proceedings of INET’97, June
1997, Kuala Lumpur, Malaysia.

11. Perry, M., Confcntlr: A Videoconference Controller: Masters’ Thesis, San Francisco State
University and Lawrence Berkeley National Laboratory, Publication Number LBNL-41154,
December 1997.

12. Romer, C., “A Composable Architecture for Scripting Multimedia Network Applications.”
Masters’ Report, University of California, Berkeley, July 1998.

13. Schooler, E., “Case Study: Multimedia Conference Control in a Packet-switched Teleconfer-
encing System.” Journal of Internetworking: Research and Experience, Volume 4, Number
2, June 1993, pp 99-120.

14. Sisalem, D., Schulzrinne, H., “The Multimedia Internet Terminal.” Journal on Telecom-
munication Systems, Volume 9, Number 3, 1998, pp 423-444.

15. Thompson, M., et al., “Certificate-based Access Control for Widely Distributed Resources.”
Proceedings of the Eighth USENIX Security Symposium (Security ‘99), Washington, D.C.,
August 23-26, 1999, pp 215-227.

